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In solving the title problem the majarity of authors have assumed the 
shape and position of the shock wave, after which the inverse problem 
was solved; ,a detailed review of existing methods is given in the pager 
[ 1 1. The method of Dorodnitsyn [ 2 1 permits the direct problem to be 
solved with the necessary degree of accuracy, in its exact formulation. 

Such calculations have been carried out at the Computing Center of 

the Academy of' Sciences. USSR, on the electronic computfng machine 

BESY- 1. 

The problem is posed of treating the caloUlatiOn by a method that 
would be equally suitable for handling both plane and axisymmetric bodies 
of various shapes (smooth. with corners, combinations) with detached 
shock waves, for different values of the adiabatic index K<(K > 1, and 
of the free-stream Mach number (1 < NW < (~1. The plane problem was con- 
sidered by the author [ 3 I, and calculation of flows at M, = 1 was 
carried out by Chushkin [ 4 1. The calculation scheme and also results of 
computations for certain simple shapes (ellipsoids, spheres and dlsks) 
are given below. 

f. We consider flow with a detached shock waye past a bo& possessing 
axial symmetry. Let a supersonic stream of ideal gas flow tith constant 
speed w_, past such a body at zero angle of attack. A shock wave farms 

ahead of the body, &se shape and location are initially unknown, 

It is required to carry out the calculation of the mixed rotational 
gas flow in the minimal region of influence, 

We introduce dimensionless variables, referring the speed w to the 
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Fig. 1. 

maximum speed to , the density p to the density p, of the free stream 
(we will denotemBail quantities ahead of the shock wave by the index -), 
the pressure p to p, wmaX2, and linear dimensions to the characteristic 
dimension of the body; then the system of gasdynamic equations will, in 
dimensionless form, be the following: 

rotwXw+vy +vp::o 
P ’ 

Henceforth the system of Equations 

O(pw)=O, wV$=O (11 

(1) will be written for axisym- 
metric flow in spherical (F, 6) or Cartesian (x = - r cos 0, y = r sin 0) 
coordinates (Fig. 1). We introduce the Bernoulli integral and the stream 
function Ifi; then the full systa of equations, for example in coordinates 
(r, 61, will have the form 

3 [r2 (p + pu2) sin Q] 
ar 

+ 3 [r (puu) sin 01 
a0 = r (2p + pz+) sin 0 (2) 

8 (mu sin Cl) a (r-r11 sin Q) 
dr + ae =O, $=rp(r$--rru)sinO, ‘9 = ‘p ($1 

Here 

C# is the entropy function (entropy s = cy In #), and u, v the components 
of the velocity w along r and 8. The unknown functions are u, zr, q5, $. 
As boundary conditions we have the following. 

On the body r = r. (0) 

where 

u dr 
U=--, 

r d0 
+ = 0, ‘p = y(O) = const (3) 



wx=w, 1 
[ 

- & (sin2 0 - mm2) , 1 wy = (war,-w2U,)Ctgu 1 m, =i -.._. 
MC0 L 

u f= w,sin6-wxcos8, u = w,sinO -k w,cosO 

Lrw,Zsin2*--(1 -wW2)‘*] 
(4) 

P== x+1, 

X+5 sin% 
pZZp W,” 

x-~l--_w,~Cos~ci ’ 

9 - (ro -f- 9 w, gp2 f-j 

2 

F-Iere c is the distance along the arc 8 = const from the body contour 
to the shock wave, o is the angle of inclination of the wave to the free- 
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On the shock wave r = r,(O) + c (8) 

stream direction (Fig. l), and wx and wY are the components 

city w along x and y. 

From (4) it is easy to obtain boundary conditions for +; 
from the relation dy/dx = tan J on the shock wave we have 

de 

de = - (r. + E) cot (0 + fl) - 2 

of the velo- 

furthermore 

(5) 

2. The method of Ibrodnitsyn reduces the integration of a system of 

partial differential equations to the numerical solution of a certain 
approximating system of ordinary differential equations. The region of 
integration is here divided just as in the plane case [ 3 I ; N-l inter- 

mediate lines are introduced between the body and the shock 

ri s ?‘o (6) f EiE (e), Ei = N -i ’ I (i=2, 3,..., N) 

after which all the partial differential equations of the initial system 

are integrated along 8 = const (or y = const) from the body contour to 
the boundary of each of the strips, and the remaining ordinary equations 
or finite relations of the system are written along the intermediate 
lines. Replacing the integrands by interpolation polynomials and inte- 

grating, we obtain an approximating system where the unknowns are the 
values of the dependent variables on the boundaries of the strips. We 
denote all quantities on the ith intermediate line by index i, on the 

shock wave (i = 1) by index 1, and on the body by index 0. Then tile 
approximating system for (2) in the Nth approximation may be written 
schematicallv as , 

ds dr0 
& =-(ro-;-8)c0t(d-~B)--;, 
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Here E,, E,, Ui, Ei are definite holomorphic functions in the region 

of integration (the foxm of the functions depending on N), D is a known 

function ED = 0 in the neighborhood of w02 = (K - l)/(~ + 111 , whereby 

all boundary conditions on the body and on the shock wave are satisfied 

exactly in any approximation. In x, y coordinates the approximating 
system will have an analogous form. 

The problem is thus reduced to finding the numerical solution of a 
boundary-value problem for the system (6) of ordinary differential equa- 
tions, where part of the boundary conditions are given on the axis of 
symmetry: 

v. = vi = 0, +i = 0, 0=$-K, Y = Pl (0) for O=O 

and the remainder on the singular line*, where we must have 

E, == 0 for D = 0, Ei = 0 for wi2 = (X - 1 + 2q) I (x + 1) 

Otherwise this singular line would be a limit line, and the solution 
would not have physical significance. 

On the singular line the N equations of the system have N movable 
singular points of saddle type. ‘ibe investigation is carried out analo- 
gously to the plane case (the Puisot diagram has just the same form). In 
the neighborhood of each singular point there exist t\No and only two 
solut,ions passing through the point, since both solutions are holo- 
morphic. One of these solutions is “pasted together” with the solution 
up to the singular point obtained in the usual way (the number of past- 
ings is equal to the degree of arbitrariness in the singular point), but 
since both solutions intersect only at the singular point, the pasting 
condition uniquely determines the integral curve passing through the 
given singular point. Some equations of the approximating system have 
singularities also on the axis of symnetry. However these are fixed 
singular points of regular type, from which it is possible to proceed 
with the use of power series in 8 or y. 

It is possible to show that in the axisynmetric case the formula for 
the angle of inclination of the line w = const to the free-strean direc- 
tion at points on the shock wave has the following form: 

* When D = 0 and E0 = 0. then also E, = 0 aatomat~ca~ly. 
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tanul,=- 
[m(W,-wwylcota)+(W~-W,)(F1+F~ cot a)]do/dy-n 

[(Fz-mcot a)(w,-w cot a)+Wy(Fg--F1)]da/dy~ncot a (7) 

Here 

m = $ [(c2 - w;, (F, + F, coto - F,) + wx (wn - wx) (F, + 2F, cot a)] 

1 
n=-c2(wm--wUI,)(wr-wZDycota) 

AYI (4 

A = c2 (1 + cot2 CJ) - (wx - w,, cot a)2 

-?L -.- 
P,=~(1_wyp x21 sin 20 

( 

2w,’ 2m,%t (x + 1) 

- 
\ w 

00 p(x+ 1) p [2m,2 + (x - 1) sins a]2 1 

where y = y,(x) is the equation of the contour of the shock wave. 
Although in contrast to the plane case @, depends also on the curvature 

of the shock wave, and cannot be tabulated in advance, Formula (7) is 

nevertheless very useful, because it provides a possibility for estimat- 

ing the accuracy of the solution. 

Fig. 2. 

Fig. 3. 
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Fig. 4. 

3. We give some results of the calculations. Solutions were carried 

out on the electronic computing machine BESM-1 for the flow past ellips- 

oids of revolution (with ratios of vertical to horizontal semi-axes 
6 = b/a = 0.5 and 6 = 1.5)) spheres (6 = l.O), and a flat-faced body 

(6 = DO) at various free-stream Mach numbers CM, = 3, 4, 6, 10, CO), 

K = 1.4, and in various approximations (N = 1, 2). 

The computing scheme for bodies with finite values of 6 was construct- 
ed in r, 8 coordinates (the origin was located at the center of curvature 

of the nose of the body, and all linear dimensions referred to the radius 
of curvature of the nose), whereas for the flat-faced body (disk) a 

Cartesian system of coordinates was used (linear dimensions being referred 
to the diameter of the disk). 

Fig. 5. 

In Figs. 2-4 are given the distributions of pressure pee = po(6)/po(0) 

over various bodies: in Fig. 2 for the ellipsoid with 6 = 0.5, in Fig. 3 
for the sphere with 6 = 1.0, and in Fig. 4 for the disk with 6 = CQ, with 
M, = 3, 4, 10 and 00, where comparison is shown with experiments carried 
out by scientific colleague Shul’gin. 

In Fig. 5 are shown the shock wave and sonic line for the sphere at 
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M=&.O : 6:l.o 

--N=j 

-N-Z 
0 3ncnep 

Fig. 6. 

M, = 3, d, 6 and m (with N = 1 and 2). The angles of intersection of the 

Sonic line with the shock wave agree well with the values obtained from 
Equation (‘I). 

Fig. 7. 

Figures 6 and 7 illustrate the convergence of the method with the 
degree of approximation. In Fig. 6 the curves A and B are characteristics 
of the first and second families, and curve C the sonic line. In Fig. 7 
is given the pressure distribution on the shock wave (the two upper 
curves) and on the body (lower curves), and the results of experiments 
carried out by Shul’gin. In Fig. 8 it is shown how the distance from the 
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body to the shock on the axis of symmetry varies for different 6. 

t7n 

Fig. 8. 

Numerical results are tabulated below for the solution for flow past 
a sphere at ki, = 4.0 and K = 1.40 with fv = 2. One table gives values of 
the velocity components u and v, the density p and pressure p at five 
points on the arcs 8 = const: the distance from the body to the shock 
along a ray was divided into four equal parts 

= O~b~dy)~ 0.25, 0.50, 0.75 and I.00 (shock) 

At 5 = 1.0, aside from these quantities, values are also given for C, 

B, the stream function @I, the entropy function q$ (entropy s1 = cv lnq$) 
and the vorticity function fl = d In 4,/d I+~. 

The vorticity at the shock wave is determined by 

Qr ;;: (ra + 8) sin 0 (1 _ Wz,& (pr- X&f 
2X 19 c* E ?+(I - w") 

stream function on a ray 8 = const can be found by integration of 

the ordinary differential equation 

dI) -=rppvsin0 
dr 

Also shown in the tables are the coordinates of the sonic line and of 
the limiting characteristics for this same case. 

The solutions for the body with 6 = m were carried out by scientific 
colleague Shulishnin. All preliminary calculations and processing of 
results was performed by Mel’tsis, Bykov and Vasil’ev. I take this 
opportunity to express thanks to these colleagues. 
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e I u v P I P 

0.0000 
0.0625 
0.1250 
0.1875 
0.2500 
0.3125 
0.3750 
0.4375 
0.5000 
0.5625 
0.6250 
0.6875 
0.7500 
0.8125 
0.8750 
0.9375 
1.0000 
1.0625 
1.1250 
1.1875 
I,2500 
1.3125 

O.OOQO 
O.OG25 
0.1250 
0.1875 
0.2500 
0.3125 
0.3750 
0.4375 
0.5000 
0.5625 
0.6250 
0.6875 
0.7500 
0.8125 
0.8750 
0.9375 
1.0000 
I.0525 
1.1250 
1.1875 
1.2500 
1.3125 

u=o 

5=0.5 

E=O 

0.0000 
0.0353 
0.0706 
0.106 
0.141 
0.176 
0.211 
0.245 
0.279 
0.313 
0.346 
0.379 
0.411 
0.443 
0.473 
0.503 
0.532 
0.560 
0.586 
0.612 
0.637 
0.660 

-0.095E 
-0.094: 
-0.0941 
-0.OE27 
-O.OEO! 
-0.0883 
-0.0850 
-0.0811 
-0.0763 
-0.0705 
-0.0637 
-0.0558 
-0.0469 
-0.0360 
-0.0239 
-0.0103 
0.0050 
0.0221 
0.0409 
0.0615 
0.0838 
0.108 

0.0000 4.902 0.694 -0.143 
0.0405 4.893 0.692 -0.142 
0.0807 4.854 0.684 -0.141 
0.121 4.816 0.672 -0.139 
0.160 4.748 0.655 -0.136 
0.199 4.664 0.635 -0.422 
0.236 4.562 0.811 -0.126 
0.274 4.445 0.583 -0.120 
0.309 4.315 0.554 -0.112 
0.344 4.172 0.523 -0.103 
0.377 4.019 0.490 -0.0929 
0.409 3.859 0.458 -0.0810 
0.439 3.692 0,425 -0.0676 
0.468 3.522 0.392 -0.0524 
0.494 3.351 0.362 -0.0355 
0.519 3.181 0.332 -0.0168 
0.542 3.013 0.304 0.0038( 
0.564 2.848 0.278 0.0262 
0.583 2.688 0.253 0.0506 
0.600 2.534 0.230 0.0767 
0.615 2.386 0.210 0.105 
0.628 2.244 0.190 0.134 

5.016 0.717 -0.0478 
5.001 0.714 -0.0474 
4.954 0.704 -0.0470 
4.877 0.689 -0.0464 
4.770 0.668 -0.0456 
4.636 0.642 -0.0444 
4.477 0.611 -0.0430 
4.296 0.577~ -0.0411 
4.094 0.539 -0.0389 
3.876 0.499 -0.0361 
3.645 0.458 -0.0328 
3.407 0.417 -0.0287 
3.157 0.375 -0.0241 
2.908 0.334 -0.0185 
2.661 0.295 -0.0121 
2.419 0.258 -0.CO46' 
2.184 0.224 0.00381 
1.960 0.192 0.0134 
1.748 0.164 0.0241 
1.551 0.138 0.0359 
1.369 1.116 0.0489 
1.202 0.0970 0.0631 

I I i 

4= 0.25 

0.0000 4.990 0.711 
0.0378 4.978 0.708 
0.0755 4.939 0.700 
0.113 4.875 0.6% 
0.150 4.788 0.667 
0.187 4.677 0.644 
0.223 4.544 0.613 
0.258 4.392 0.555 
0.293 4.222 0.550 
0.327 4.037 0.514 
0.360 3.841 0.477 
0,391 3.636 0.440 
0.422 3.422 0.401 
0.452 3.207 0.364 
0.480 2.991 0.529 
0.507 2.778 0.295 
0.532 2.570 0.263 
0.556 2.369 0.234 
0.578 2.176 0,207 
0.599 1.992 0.182 
0.618 1.819 0.160 
0.635 1.657 0.140 

=0.75 

0.0000 4.761 
0.0433 4.755 
0.0865 4.736 
0.129 4.704 
0.171 4.660 
0.212 4.604 
0.252 4.536 
0.291 4.459 
0.329 4.372 
0.365 4.276 
0.399 4.172 
0.431 4.063 
0.462 3.949 
0.490 3.831 
0.516 3.710 
0.541 3.589 
0.563 3.467 
0.582 3.346 
0.600 3.226 
0.615 3.107 
0.62% 2.991 
0.638 2.877 

0.666 
0.664 
0.658 
0.648 
0.634 
0.617 
0.596 
0.574 
0.549 
0.523 
0.496 
0.469 
0.441 
0.414 
0.388 
0.363 
0.338 
0.316 
0.294 
0.273 
0.254 
0.236 
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E=l.O 

0 0000 
0.0625 
0.1250 
OA875 
0.2500 
0.3125 
0.3750 
0.4375 
0.5000 
0.5625 
0.6250 
0.6875 
0.7500 
0.8125 
0.8750 
0.9375 
1.0000 
1.0625 
1.1250 
1.1875 
1.2500 
1.3125 

- 

-0.191 
-0.190 
-0.188 
-0.185 
-0.180 
-0.174 
-0.166 
-0.157 
-0.147 
-0.134 
-0.120 
-0.104 

7;j;;j 
-0:046E 
-0.024; 
O.OOO( 
0.0252 
0.053( 
0.08lf 
0.111 
0.142 

0.0000 4.572 
0.0463 4,569 
0.0927 4.560 
0.139 4.546 
0.184 4.526 
0.228 4.501 
0.270 4,470 
0.312 4.434 
0.351 4.392 
0.389 4.346 
0.425 4.294 
0.459 4.237 
0.490 4.176 
0.520 4.110 
0.547 4.040 
0.571 3.967 
0.593 3.891 
0.613 3.811 
0.630 3.728 
0.644 3.644 
0.656 3.558 
0.665 3.470 

Sonic line 

-x=0.736 
0.764 
0.799 
0.829 
0.870 
0.880 
0.903 
0.925 
0.946 
0.966 
0.986 
1.004 
1.022 
1.031 

- 

+-y=0.677 
0.690 
0.699 
0.702 
0.701 
0.700 
0.695 
0.690 
0.682 
0.674 
0.665 
0.655 
0.645 
0.639 

0.629 0.175 1.571 0.0000 
0.628 0.176 1.520 0.00235 
0.623 0.177 1.470 0.00940 
0.615 0.179 1.419 0.0211 
0.604 0.182 1.369 0.0373 
0.590 0,186 1.320 0.0580 
0.574 0.191 1.272 0.0831 
0.556 0.198 1.225 0.112 
0.536 0.205 1.179 0.146 
0.516 0.214 1.134 0.183 
0.494 0.224 1.090 0.224 
0.471 0.236 1.048 0.269 
0.448 0.250 1.008 0.317 
0.426 0.266 0.969 0.369 
0.404 0.284 0.932 0.444 
0.382 0.305 0.896 0.483 
0.360 0.328 0.862 0.545 
0.340 0.355 0.830 0.611 
0.320 0.385 0.798 0.681 
0.301 0.418 0.769 0.755 
0.283 0.457 0.741 0.834 
0.266 0.500 0.714 0.918 

0.0750 
0.0748 
0.0744 
0.0738 
0.0729 
0.0718 
0.0706 
0.0691 
0.0676 
0.0659 
0.0642 
0.0624 
0.0606 
0.0589 
0.0571 

::E 
0.0522 
0.0507 
0.0493 
0.04?9 
0.0467 

-0.717 
-0.734 
-0.738 
-0.735 
-0.728 
-0.718 
-0.707 
-0.693 
-0.677 
-0.658 
-0.639 
-0.614 
-0.586 
-0.559 

7;.;;; 
-01467 
-0.434 
-0.401 
-0.367 
-0.333 
-0.299 

Characteristic 

I 

Characteristic 

of fsmily I of family II 

-x=0.736 ky.== 0.677 
0.756 0.701 
0.773 0.729 
0.785 0.761 
0.794 0.797 
0.798 0.816 
0.801 0.845 
0.801 0.873 
0.800 0.900 
0.798 0.926 
0.791 0.977 
0.779 1.027 
0.773 1.051 

-x=0.736 
0.760 
0.786 
0.813 
0.841 
0.870 
0.900 
0.931 
0.951 

-1 Ly =0.677 
0.697 
0.715 
0.731 
0.747 
0.761 
0.774 
0.786 
0.793 
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